Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

نویسندگان

  • Robert E. Kopp
  • Robert M. DeConto
  • Daniel A. Bader
  • Carling C. Hay
  • Radley M. Horton
  • Scott Kulp
  • Michael Oppenheimer
  • David Pollard
  • Benjamin H. Strauss
چکیده

Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93–243 cm) and RCP 2.6 (26–98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks. Plain Language Summary Recent ice-sheet modeling papers have introduced new physical mechanisms—specifically the hydrofracturing of ice shelves and the collapse of ice cliffs—that can rapidly increase ice-sheet mass loss from a marine-based ice-sheet, as exists in much of Antarctica. This paper links new Antarctic model results into a sea-level rise projection framework to examine their influence on global and regional sea-level rise projections and their associated uncertainties, the potential impact of projected sea-level rise on areas currently occupied by human populations, and the implications of these projections for the ability to constrain future changes from present observations. Under a high greenhouse gas emission future, these new physical processes increase median projected 21st century GMSL rise from ∼80 to ∼150 cm. Revised median RSL projections for a high-emissions future would, without protective measures, by 2100 submerge land currently home to more than 153 million people. The use of a physical model indicates that emissions matter more for 21st century sea-level change than previous projections showed. Moreover, there is little correlation between the contribution of Antarctic to sea-level rise by 2050 and its contribution in 2100 and beyond, so current sea-level observations cannot exclude future extreme outcomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss

The potential for break-up of Antarctic ice shelves by hydrofracturing and following ice cliff instability might be important for future ice dynamics. One recent study suggests that the Antarctic ice sheet could lose a lot more mass during the 21st century than previously thought. This increased mass-loss is found to strongly depend on the emission scenario and thereby on global temperature cha...

متن کامل

Probabilistic inversion of expert assessments to inform projections about Antarctic ice sheet responses

The response of the Antarctic ice sheet (AIS) to changing global temperatures is a key component of sea-level projections. Current projections of the AIS contribution to sea-level changes are deeply uncertain. This deep uncertainty stems, in part, from (i) the inability of current models to fully resolve key processes and scales, (ii) the relatively sparse available data, and (iii) divergent ex...

متن کامل

Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss

The stability of marine sectors of the Antarctic Ice Sheet (AIS) in a warming climate has been identified as the largest source of uncertainty in projections of future sea-level rise. Sea-level fall near the grounding line of a retreating marine ice sheet has a stabilizing influence on the ice sheets, and previous studies have established the importance of this feedback on ice age AIS evolution...

متن کامل

Linear sea-level response to abrupt ocean warming of major West Antarctic ice basin

Antarctica’s contribution to global sea-level rise has recently been increasing1. Whether its ice discharge will become unstable and decouple from anthropogenic forcing2–4 or increase linearly with the warming of the surrounding ocean is of fundamental importance5. Under unabated greenhouse-gas emissions, ocean models indicate an abrupt intrusion of warm circumpolar deepwater into the cavity be...

متن کامل

Sea level rise projections for northern Europe under RCP8.5

Sea level rise poses a significant threat to coastal communities, infrastructure, and ecosystems. Sea level rise is not uniform globally but is affected by a range of regional factors. In this study, we calculate regional projections of 21st century sea level rise in northern Europe, focusing on the British Isles, the Baltic Sea, and the North Sea. The input to the regional sea level projection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017